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A classification problem consists of a pair (X,E), where X is a set

and E an equivalence relation on X. A solution is given by an

assignment of complete invariants to elements of X.

� Given two classification problems (X,E) and (Y, F ), we say that

E reduces to F iff there exists a map φ : X → Y such that

x E y ⇐⇒ φ(x) F φ(y),

for all x, y ∈ X.

� If X and Y are two standard Borel spaces, we say that E is

Borel reducible to F , and write E ≤B F , iff there exists a

Borel map φ : X → Y reducing E to F .

� We say that E and F are Borel bi-reducible, and write E ∼B F ,

if E ≤B F and F ≤B E.

� If X and Y are two topological spaces, we say that E is Baire

reducible to F , and write E ≤Baire F , if there exists a Baire

measurable map φ : X → Y reducing E to F .
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Let X be a Polish or a standard Borel space. A subset A ⊆ X is

analytic (or Σ1
1) if there is a Borel subset C of X × ωω such that for

all x ∈ X,

x ∈ A ⇐⇒ ∃y ∈ ωω(x, y) ∈ C,

i.e. A is the projection on the first coordinate of C.

Example

Let LO be the Polish space of codes for linear orders on ω, i.e.

LO = {L ∈ 2ω×ω : L codes a linear order},

and ∼=LO is the isomorphism relation on LO.

�
∼=LO is an analytic equivalence relation: it is induced by a

continuous action of the infinite symmetric group S∞.

�
∼=LO is S∞-complete, i.e. any other equivalence relation arising

from a Borel action of the group S∞ Borel reduces to ∼=LO.
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Connections between linear orders and knots

Definition

Let B̄ be a space homeomorphic to a closed ball in R3. Given a map

f : [0; 1] → B̄, we say that the pair (B̄, Im f) is a proper arc in B̄ if

f is a topological embedding and f(x) ∈ ∂B̄ ⇐⇒ x = 0 or x = 1.

The collection of proper arcs is denoted by A.

Definition

Two proper arcs (B̄, f) and (B̄′, f ′) are equivalent, in symbols

(B̄, f) ≡A (B̄′, f ′),

if there exists a homeomorphism φ : B̄ → B̄′ such that φ(f) = f ′.
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Definition

A knot is a homeomorphic image of S1 in S3. The collection of all

knots is denoted by K.

Definition

Two knots K,K ′ ∈ K are equivalent, in symbols

K ≡K K ′,

if there exists a homeomorphism φ : S3 → S3 such that φ(K) = K ′.
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Theorem (V. Kulikov, 2017)

(a) ∼=LO ≤B ≡A,≡K.

(b) There is a turbulent equivalence relation E such that

E ≤B ≡A,≡K, hence ≡A,≡K ≰B
∼=LO. Thus ∼=LO <B ≡A,≡K.

Definition

Let (B̄, f), (B̄′, g) ∈ A. We say that (B̄′, g) is a component of

(B̄, f), and set

(B̄′, g) ≾A (B̄, f),

if there exists a topological embedding φ : B̄′ → B̄ such that

φ(g) = f ∩ Im φ.

The relation ≾A is an analytic quasi-order on the standard Borel

space A. The analytic equivalence relation associated to ≾A is

denoted by ≈A.

What is the counterpart of ≾A for linear orders?
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Convex embeddability on LO

Consider the relation of convex embeddability ⊴LO between two

linear orders L and L′ (R. Bonnet, E. Corominas and M. Pouzet,

1973):

L ⊴ L′ if L is isomorphic to a convex subset L̃ of L′.

L′

L

LrLl L̃

Clearly, L⊴LO L′ ⇒ L ⊑LO L′, where ⊑LO is the usual embeddability

on LO.
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We call convex bi-embeddability, and denote by ▷◁LO, the

equivalence relation on LO induced by ⊴LO.

Clearly, for L,L′ ∈ LO,

L ∼=LO L′ ⇒ L ▷◁LO L′,

but the converse is not true.

Example

ω + Zω ▷◁LO Zω, but ω + Zω ≇LO Zω.

Theorem [I. - Motto Ros]

⊴LO ≤B ≾A, thus also ▷◁LO ≤B ≈A.
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Complexity with respect to Borel Reducibility

Theorem [I. - Kulikov - Marcone - Motto Ros]

(a) ∼=LO ≤B ▷◁LO.

(b) ▷◁LO ≤Baire
∼=LO.

(c) If X is a turbulent Polish G-space, then the equivalence relation

induced by the group G on X is not Borel reducible to ▷◁LO.

complete analytic

equivalence relations

id(N)
id(R)

smooth

Borel

proper

analytic

E0

∼=LO

classifiable by

countable structures

▷◁LO

other analytic

equivalence relations
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A component notion for Knots?

One may be tempted to transfer the component relation from proper

arcs to knots through the transformation (B̄, f) 7→ K(B̄,f).

Given two knots K,K ′ ∈ K, we say that K is a component

of K ′, and write K ≾K K ′, if K ≡K K(B̄′,K′∩B̄′) for some

sub-arc (B̄′,K ′ ∩ B̄′) of K ′.

However, the choice of the cutting point for a knot is in general not

unique and one may produce unexpected situations. Moreover, ≾K is

not transitive.

Then we consider the “transitivization” of the ≾K and introduce the

(finite) piecewise component relation ≾<ω
K .
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The (finite) piecewise mutual component relation

Definition

Let K,K ′ ∈ K. Then K is a (finite) piecewise component of K ′,

in symbols

K ≾<ω
K K ′,

if and only if there is an orientation of K ′ and a finite number of

closed balls B̄′
1, ..., B̄

′
n such that

(a) the (B̄′
i,K

′ ∩ B̄′
i) are (almost) pairwise disjoint sub-arcs of K ′,

oriented according to the chosen orientation of K ′, of which K is

an “ordered” (finite) tame sum;

(b) if an endpoint of some (B̄′
i,K

′ ∩ B̄′
i) is singular, then it is not

isolated.
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Countable Circular Orders

Definition (Cěch, 1969)

A ternary relation C ⊂ X3 on a set X is said to be a circular

order if the following conditions are satisfied:

� Cyclicity: (x, y, z) ∈ C ⇒ (y, z, x) ∈ C;

� Asymmetry: (x, y, z) ∈ C ⇒ (y, x, z) /∈ C;

� Transitivity: (x, y, z), (x, z, w) ∈ C ⇒ (x, y, w) ∈ C;

� Totality: if x, y, z ∈ X are distinct, then (x, y, z) ∈ C or

(x, z, y) ∈ C.

Denote by CO the Polish space of codes for circular orders on ω, i.e.

CO = {C ∈ 2ω×ω×ω : C codes a circular order}.

11 / 17



The isomorphism relation on CO

Definition

Let C,C ′ ∈ CO. We say that C and C ′ are circularly isomorphic,

and write C ∼=CO C ′, if there exists a bijective function between

them which preserves the circular order.

Every L ∈ LO defines a standard circular order CL ∈ CO as follows:

CL(n,m, k) ⇐⇒ (n <L m <L k) ∨ (m <L k <L n) ∨ (k <L n <L m).

Clearly, for L,L′ ∈ LO,

L ∼=LO L′ ⇒ CL
∼=CO CL′ .

Example

ω + 1 ≇LO ω, but Cω+1
∼=CO Cω.

Theorem [I. - Marcone]

�
∼=CO ∼B

∼=LO.

�
∼=CO ≤B ≡K.
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Convex embeddability on CO

Definition (B. Kulpeshov, H. D. Macpherson, 2005)

Let A ⊆ C, where C is a circular order. The set A is said to be

convex in C if for any x, y ∈ A one of the following holds:

1. for any z ∈ C with C(x, z, y) we have z ∈ A;

2. for any z ∈ C with C(y, z, x) we have z ∈ A.

Definition

Let C and C ′ be circular orders. We say that C is a convex of C ′,

and write C ⊴c C
′, if there exists a convex subset A of C ′ such that

C ∼=CO A. We denote by (⊴c)CO the restriction of the convexity

relation to the set CO of (codes for) countable circular linear orders.

The convexity relation ⊴c on CO is not transitive.
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C C1

C2

C3

C′
f1(C1)

f2(C2)

f3(C3)⊴<ω
c

Definition

Let C,C ′ ∈ CO. Then C ⊴<ω
c C ′ if and only if there exists k ∈ ω and

(non necessarily infinite) convex subsets C1, . . . , Ck of C such that

� C = C1 + ...+ Ck, and

� for every i = 1, ..., k there exists fi : Ci → C ′ witnessing Ci ⊴c C
′

such that the fi(Ci)’s are pairwise disjoint in C ′ and

C ′(fi(xi), fj(yj), fh(zh))

for every xi ∈ Ci, yj ∈ Cj , zh ∈ Ch and i < j < h ≤ k.
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(⊴<ω
c )CO is an analytic quasi-order on CO. Denote by (▷◁<ω

c )CO its

induced (analytic) equivalence relation.

Theorem [I. - Marcone - Motto Ros]

∼=LO ≤B ▷◁<ω
c .

Consider the equivalence relation E1, that is defined on 2ω×ω as

x E1 y ⇐⇒ ∃m ∀n ≥ m ∀k x(n, k) = y(n, k).

E1 is not reducible to any orbit equivalence relation.

Theorem [Kulikov]

E1 ≤B ▷◁<ω
c .

As corollaries, we have

� ▷◁<ω
c is not reducible to any orbit equivalence relation;

�
∼=LO <B ▷◁<ω

c ;

� ▷◁<ω
c does not reduce to ▷◁LO.
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Denote by ≈<ω
K its associated (analytic) equivalence relation and call

it the (finite) piecewise mutual component relation.

Theorem [I. - Marcone - Motto Ros]

� (⊴<ω
c )CO ≤B ≾<ω

K . Then, we have (▷◁<ω
c )CO ≤B ≈<ω

K .

�
∼=CO ∼B

∼=LO <B ≈<ω
K .
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