Convex embeddability on linear/circular orders and connections to knot theory

(joint work with Vadim Kulikov, Alberto Marcone and Luca Motto Ros)

Martina Iannella
Università degli Studi di Udine

Winter School in Abstract Analysis 2022
01/02/2022

A classification problem consists of a pair (X, E), where X is a set and E an equivalence relation on X. A solution is given by an assignment of complete invariants to elements of X.

A classification problem consists of a pair (X, E), where X is a set and E an equivalence relation on X. A solution is given by an assignment of complete invariants to elements of X.

- Given two classification problems (X, E) and (Y, F), we say that E reduces to F iff there exists a map $\varphi: X \rightarrow Y$ such that

$$
x E y \Longleftrightarrow \varphi(x) F \varphi(y)
$$

for all $x, y \in X$.

A classification problem consists of a pair (X, E), where X is a set and E an equivalence relation on X. A solution is given by an assignment of complete invariants to elements of X.

- Given two classification problems (X, E) and (Y, F), we say that E reduces to F iff there exists a map $\varphi: X \rightarrow Y$ such that

$$
x E y \Longleftrightarrow \varphi(x) F \varphi(y)
$$

for all $x, y \in X$.

- If X and Y are two standard Borel spaces, we say that E is Borel reducible to F, and write $E \leq_{B} F$, iff there exists a Borel map $\varphi: X \rightarrow Y$ reducing E to F.
- We say that E and F are Borel bi-reducible, and write $E \sim_{B} F$, if $E \leq_{B} F$ and $F \leq_{B} E$.

A classification problem consists of a pair (X, E), where X is a set and E an equivalence relation on X. A solution is given by an assignment of complete invariants to elements of X.

- Given two classification problems (X, E) and (Y, F), we say that E reduces to F iff there exists a map $\varphi: X \rightarrow Y$ such that

$$
x E y \Longleftrightarrow \varphi(x) F \varphi(y)
$$

for all $x, y \in X$.

- If X and Y are two standard Borel spaces, we say that E is Borel reducible to F, and write $E \leq_{B} F$, iff there exists a Borel map $\varphi: X \rightarrow Y$ reducing E to F.
- We say that E and F are Borel bi-reducible, and write $E \sim_{B} F$, if $E \leq_{B} F$ and $F \leq_{B} E$.
- If X and Y are two topological spaces, we say that E is Baire reducible to F, and write $E \leq_{\text {Baire }} F$, if there exists a Baire measurable map $\varphi: X \rightarrow Y$ reducing E to F.

Let X be a Polish or a standard Borel space. A subset $A \subseteq X$ is analytic (or $\boldsymbol{\Sigma}_{1}^{1}$) if there is a Borel subset C of $X \times \omega^{\omega}$ such that for all $x \in X$,

$$
x \in A \Longleftrightarrow \exists y \in \omega^{\omega}(x, y) \in C,
$$

i.e. A is the projection on the first coordinate of C.

Let X be a Polish or a standard Borel space. A subset $A \subseteq X$ is analytic (or $\boldsymbol{\Sigma}_{1}^{1}$) if there is a Borel subset C of $X \times \omega^{\omega}$ such that for all $x \in X$,

$$
x \in A \Longleftrightarrow \exists y \in \omega^{\omega}(x, y) \in C
$$

i.e. A is the projection on the first coordinate of C.

Example

Let $L O$ be the Polish space of codes for linear orders on ω, i.e.

$$
L O=\left\{L \in 2^{\omega \times \omega}: L \text { codes a linear order }\right\},
$$

and $\cong_{L O}$ is the isomorphism relation on $L O$.

Let X be a Polish or a standard Borel space. A subset $A \subseteq X$ is analytic (or $\boldsymbol{\Sigma}_{1}^{1}$) if there is a Borel subset C of $X \times \omega^{\omega}$ such that for all $x \in X$,

$$
x \in A \Longleftrightarrow \exists y \in \omega^{\omega}(x, y) \in C
$$

i.e. A is the projection on the first coordinate of C.

Example

Let $L O$ be the Polish space of codes for linear orders on ω, i.e.

$$
L O=\left\{L \in 2^{\omega \times \omega}: L \text { codes a linear order }\right\},
$$

and $\cong_{L O}$ is the isomorphism relation on $L O$.

- $\cong_{L O}$ is an analytic equivalence relation: it is induced by a continuous action of the infinite symmetric group S_{∞}.

Let X be a Polish or a standard Borel space. A subset $A \subseteq X$ is analytic (or $\boldsymbol{\Sigma}_{1}^{1}$) if there is a Borel subset C of $X \times \omega^{\omega}$ such that for all $x \in X$,

$$
x \in A \Longleftrightarrow \exists y \in \omega^{\omega}(x, y) \in C
$$

i.e. A is the projection on the first coordinate of C.

Example

Let $L O$ be the Polish space of codes for linear orders on ω, i.e.

$$
L O=\left\{L \in 2^{\omega \times \omega}: L \text { codes a linear order }\right\},
$$

and $\cong_{L O}$ is the isomorphism relation on $L O$.

- $\cong_{L O}$ is an analytic equivalence relation: it is induced by a continuous action of the infinite symmetric group S_{∞}.
- $\cong_{L O}$ is S_{∞}-complete, i.e. any other equivalence relation arising from a Borel action of the group S_{∞} Borel reduces to $\cong_{L O}$.

Connections between linear orders and knots

Definition

Let \bar{B} be a space homeomorphic to a closed ball in \mathbb{R}^{3}. Given a map $f:[0 ; 1] \rightarrow \bar{B}$, we say that the pair $(\bar{B}, \operatorname{Im} f)$ is a proper arc in \bar{B} if f is a topological embedding and $f(x) \in \partial \bar{B} \Longleftrightarrow x=0$ or $x=1$. The collection of proper arcs is denoted by \mathcal{A}.

Connections between linear orders and knots

Definition

Let \bar{B} be a space homeomorphic to a closed ball in \mathbb{R}^{3}. Given a map $f:[0 ; 1] \rightarrow \bar{B}$, we say that the pair $(\bar{B}, \operatorname{Im} f)$ is a proper arc in \bar{B} if f is a topological embedding and $f(x) \in \partial \bar{B} \Longleftrightarrow x=0$ or $x=1$. The collection of proper arcs is denoted by \mathcal{A}.

Definition

Two proper arcs (\bar{B}, f) and $\left(\bar{B}^{\prime}, f^{\prime}\right)$ are equivalent, in symbols

$$
(\bar{B}, f) \equiv{ }_{\mathcal{A}}\left(\bar{B}^{\prime}, f^{\prime}\right),
$$

if there exists a homeomorphism $\varphi: \bar{B} \rightarrow \bar{B}^{\prime}$ such that $\varphi(f)=f^{\prime}$.

Connections between linear orders and knots

Definition

Let \bar{B} be a space homeomorphic to a closed ball in \mathbb{R}^{3}. Given a map $f:[0 ; 1] \rightarrow \bar{B}$, we say that the pair $(\bar{B}, \operatorname{Im} f)$ is a proper arc in \bar{B} if f is a topological embedding and $f(x) \in \partial \bar{B} \Longleftrightarrow x=0$ or $x=1$. The collection of proper arcs is denoted by \mathcal{A}.

Definition

Two proper arcs (\bar{B}, f) and $\left(\bar{B}^{\prime}, f^{\prime}\right)$ are equivalent, in symbols

$$
(\bar{B}, f) \equiv{ }_{\mathcal{A}}\left(\bar{B}^{\prime}, f^{\prime}\right),
$$

if there exists a homeomorphism $\varphi: \bar{B} \rightarrow \bar{B}^{\prime}$ such that $\varphi(f)=f^{\prime}$.

Trivial arc

Trefoil arc

Definition

A knot is a homeomorphic image of S^{1} in S^{3}. The collection of all knots is denoted by \mathcal{K}.

Definition

A knot is a homeomorphic image of S^{1} in S^{3}. The collection of all knots is denoted by \mathcal{K}.

Definition

Two knots $K, K^{\prime} \in \mathcal{K}$ are equivalent, in symbols

$$
K \equiv \equiv_{\mathcal{K}} K^{\prime},
$$

if there exists a homeomorphism $\varphi: S^{3} \rightarrow S^{3}$ such that $\varphi(K)=K^{\prime}$.

Definition

A knot is a homeomorphic image of S^{1} in S^{3}. The collection of all knots is denoted by \mathcal{K}.

Definition

Two knots $K, K^{\prime} \in \mathcal{K}$ are equivalent, in symbols

$$
K \equiv \equiv_{\mathcal{K}} K^{\prime},
$$

if there exists a homeomorphism $\varphi: S^{3} \rightarrow S^{3}$ such that $\varphi(K)=K^{\prime}$.

Trivial knot

Trefoil knot

Theorem (V. Kulikov, 2017)

(a) $\cong_{L O} \leq_{B} \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}$.
(b) There is a turbulent equivalence relation E such that $E \leq_{B} \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}$, hence $\equiv_{\mathcal{A}}, \equiv_{\mathcal{K}} \not \leq_{B} \cong_{L O}$. Thus $\cong_{L O}<_{B} \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}$.

Theorem (V. Kulikov, 2017)

(a) $\cong_{L O} \leq_{B} \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}$.
(b) There is a turbulent equivalence relation E such that

$$
E \leq_{B} \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}} \text {, hence } \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}} \not \not_{B} \cong_{L O} . \text { Thus } \cong_{L O}<_{B} \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}} .
$$

Definition

Let $(\bar{B}, f),\left(\bar{B}^{\prime}, g\right) \in \mathcal{A}$. We say that $\left(\bar{B}^{\prime}, g\right)$ is a component of (\bar{B}, f), and set

$$
\left(\bar{B}^{\prime}, g\right) \precsim_{\mathcal{A}}(\bar{B}, f),
$$

if there exists a topological embedding $\varphi: \bar{B}^{\prime} \rightarrow \bar{B}$ such that $\varphi(g)=f \cap \operatorname{Im} \varphi$.

Theorem (V. Kulikov, 2017)

(a) $\cong_{L O} \leq_{B} \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}$.
(b) There is a turbulent equivalence relation E such that

$$
E \leq_{B} \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}, \text { hence } \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}} \not \not_{B} \cong_{L O} . \text { Thus } \cong_{L O}<_{B} \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}} .
$$

Definition

Let $(\bar{B}, f),\left(\bar{B}^{\prime}, g\right) \in \mathcal{A}$. We say that $\left(\bar{B}^{\prime}, g\right)$ is a component of (\bar{B}, f), and set

$$
\left(\bar{B}^{\prime}, g\right) \precsim_{\mathcal{A}}(\bar{B}, f),
$$

if there exists a topological embedding $\varphi: \bar{B}^{\prime} \rightarrow \bar{B}$ such that $\varphi(g)=f \cap \operatorname{Im} \varphi$.

The relation $\precsim \mathcal{A}^{\text {is an analytic quasi-order on the standard Borel }}$ space \mathcal{A}. The analytic equivalence relation associated to $\precsim_{\mathcal{A}}$ is denoted by $\approx_{\mathcal{A}}$.

Theorem (V. Kulikov, 2017)

(a) $\cong_{L O} \leq_{B} \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}$.
(b) There is a turbulent equivalence relation E such that

$$
E \leq_{B} \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}, \text { hence } \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}} \not \not_{B} \cong_{L O} . \text { Thus } \cong_{L O}<_{B} \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}} .
$$

Definition

Let $(\bar{B}, f),\left(\bar{B}^{\prime}, g\right) \in \mathcal{A}$. We say that $\left(\bar{B}^{\prime}, g\right)$ is a component of (\bar{B}, f), and set

$$
\left(\bar{B}^{\prime}, g\right) \precsim \mathcal{A}(\bar{B}, f),
$$

if there exists a topological embedding $\varphi: \bar{B}^{\prime} \rightarrow \bar{B}$ such that $\varphi(g)=f \cap \operatorname{Im} \varphi$.

The relation $\precsim \mathcal{A}^{\text {is an analytic quasi-order on the standard Borel }}$ space \mathcal{A}. The analytic equivalence relation associated to $\precsim_{\mathcal{A}}$ is denoted by $\approx_{\mathcal{A}}$.

What is the counterpart of $\precsim_{\mathcal{A}}$ for linear orders?

Convex embeddability on $L O$

Consider the relation of convex embeddability $\unlhd_{L O}$ between two linear orders L and L^{\prime} (R. Bonnet, E. Corominas and M. Pouzet, 1973):

$$
L \unlhd L^{\prime} \text { if } L \text { is isomorphic to a convex subset } \widetilde{L} \text { of } L^{\prime} .
$$

Convex embeddability on $L O$

Consider the relation of convex embeddability $\unlhd_{L O}$ between two linear orders L and L^{\prime} (R. Bonnet, E. Corominas and M. Pouzet, 1973):

$$
L \unlhd L^{\prime} \text { if } L \text { is isomorphic to a convex subset } \widetilde{L} \text { of } L^{\prime} .
$$

Convex embeddability on $L O$

Consider the relation of convex embeddability $\unlhd_{L O}$ between two linear orders L and L^{\prime} (R. Bonnet, E. Corominas and M. Pouzet, 1973):

$$
L \unlhd L^{\prime} \text { if } L \text { is isomorphic to a convex subset } \widetilde{L} \text { of } L^{\prime} \text {. }
$$

Clearly, $L \unlhd_{\text {LO }} L^{\prime} \Rightarrow L \sqsubseteq_{L O} L^{\prime}$, where $\sqsubseteq_{L O}$ is the usual embeddability on $L O$.

We call convex bi-embeddability, and denote by $\unrhd_{L O}$, the equivalence relation on $L O$ induced by $\unlhd_{L O}$.

Clearly, for $L, L^{\prime} \in L O$,

$$
L \cong_{L O} L^{\prime} \Rightarrow L \bowtie_{L O} L^{\prime},
$$

but the converse is not true.

Example

$\omega+\mathbb{Z} \omega \bowtie_{\mathrm{LO}} \mathbb{Z} \omega$, but $\omega+\mathbb{Z} \omega \not \not_{L O} \mathbb{Z} \omega$.

We call convex bi-embeddability, and denote by $\unrhd_{L O}$, the equivalence relation on $L O$ induced by $\unlhd_{L O}$.

Clearly, for $L, L^{\prime} \in L O$,

$$
L \cong_{L O} L^{\prime} \Rightarrow L \unrhd_{L O} L^{\prime},
$$

but the converse is not true.

```
Example
\omega+\mathbb{Z}\omega\mp@subsup{\unrhd}{\textrm{LO}}{}\mathbb{Z}\omega\mathrm{ , but }\omega+\mathbb{Z}\omega\not\mp@subsup{\not二}{LO}{}\mathbb{Z}\omega\mathrm{ .}
```

Theorem [I. - Motto Ros]
$\unlhd_{L O} \leq_{B} \precsim_{\mathcal{A}}$, thus also $\bowtie_{L O} \leq_{B} \approx_{\mathcal{A}}$.

Complexity with respect to Borel Reducibility

Theorem [I. - Kulikov - Marcone - Motto Ros]

(a) $\cong_{L O} \leq_{B} \bowtie_{L O}$.
(b) $\bowtie_{\text {LO }} \leq_{\text {Baire }} \cong_{\text {LO }}$.
(c) If X is a turbulent Polish G-space, then the equivalence relation induced by the group G on X is not Borel reducible to $\bowtie_{L O}$.

A component notion for Knots?

One may be tempted to transfer the component relation from proper arcs to knots through the transformation $(\bar{B}, f) \mapsto K_{(\bar{B}, f)}$.

$$
\begin{aligned}
& \text { Given two knots } K, K^{\prime} \in \mathcal{K} \text {, we say that } K \text { is a component } \\
& \text { of } K^{\prime} \text {, and write } K \precsim \mathcal{K} K^{\prime} \text {, if } K \equiv_{\mathcal{K}} K_{\left(\bar{B}^{\prime}, K^{\prime} \cap \bar{B}^{\prime}\right)} \text { for some } \\
& \text { sub-arc }\left(\bar{B}^{\prime}, K^{\prime} \cap \bar{B}^{\prime}\right) \text { of } K^{\prime} \text {. }
\end{aligned}
$$

However, the choice of the cutting point for a knot is in general not unique and one may produce unexpected situations. Moreover, $\precsim \kappa$ is not transitive.

Then we consider the "transitivization" of the $\precsim \mathcal{K}$ and introduce the (finite) piecewise component relation $\precsim<\mathcal{K}$.

The (finite) piecewise mutual component relation

Definition

Let $K, K^{\prime} \in \mathcal{K}$. Then K is a (finite) piecewise component of K^{\prime}, in symbols

$$
K \precsim<{ }_{K}{ }^{\prime} K^{\prime},
$$

if and only if there is an orientation of K^{\prime} and a finite number of closed balls $\overline{B_{1}^{\prime}}, \ldots, \overline{B_{n}^{\prime}}$ such that

The (finite) piecewise mutual component relation

Definition

Let $K, K^{\prime} \in \mathcal{K}$. Then K is a (finite) piecewise component of K^{\prime}, in symbols

$$
K \precsim<{ }_{K}{ }^{\prime} K^{\prime},
$$

if and only if there is an orientation of K^{\prime} and a finite number of closed balls $\overline{B_{1}^{\prime}}, \ldots, \overline{B_{n}^{\prime}}$ such that
(a) the ($\bar{B}_{i}^{\prime}, K^{\prime} \cap \bar{B}_{i}^{\prime}$) are (almost) pairwise disjoint sub-arcs of K^{\prime}, oriented according to the chosen orientation of K^{\prime}, of which K is an "ordered" (finite) tame sum;
(b) if an endpoint of some ($\bar{B}_{i}^{\prime}, K^{\prime} \cap \bar{B}_{i}^{\prime}$) is singular, then it is not isolated.

Countable Circular Orders

Definition (Cěch, 1969)

A ternary relation $C \subset X^{3}$ on a set X is said to be a circular order if the following conditions are satisfied:

- Cyclicity: $(x, y, z) \in C \Rightarrow(y, z, x) \in C$;
- Asymmetry: $(x, y, z) \in C \Rightarrow(y, x, z) \notin C$;
- Transitivity: $(x, y, z),(x, z, w) \in C \Rightarrow(x, y, w) \in C$;
- Totality: if $x, y, z \in X$ are distinct, then $(x, y, z) \in C$ or $(x, z, y) \in C$.

Denote by $C O$ the Polish space of codes for circular orders on ω, i.e.

$$
C O=\left\{C \in 2^{\omega \times \omega \times \omega}: C \text { codes a circular order }\right\} .
$$

The isomorphism relation on $C O$

Definition

Let $C, C^{\prime} \in C O$. We say that C and C^{\prime} are circularly isomorphic, and write $C \cong_{C O} C^{\prime}$, if there exists a bijective function between them which preserves the circular order.

The isomorphism relation on CO

Definition

Let $C, C^{\prime} \in C O$. We say that C and C^{\prime} are circularly isomorphic, and write $C \cong_{C O} C^{\prime}$, if there exists a bijective function between them which preserves the circular order.

Every $L \in L O$ defines a standard circular order $C_{L} \in C O$ as follows:
$C_{L}(n, m, k) \Longleftrightarrow\left(n<_{L} m<_{L} k\right) \vee\left(m<_{L} k<_{L} n\right) \vee\left(k<_{L} n<_{L} m\right)$.
Clearly, for $L, L^{\prime} \in L O$,

$$
L \cong \cong_{L O} L^{\prime} \Rightarrow C_{L} \cong_{C O} C_{L^{\prime}} .
$$

Example

$\omega+1 \not ¥_{L O} \omega$, but $C_{\omega+1} \cong_{C O} C_{\omega}$.

The isomorphism relation on CO

Definition

Let $C, C^{\prime} \in C O$. We say that C and C^{\prime} are circularly isomorphic, and write $C \cong_{C O} C^{\prime}$, if there exists a bijective function between them which preserves the circular order.

Every $L \in L O$ defines a standard circular order $C_{L} \in C O$ as follows:
$C_{L}(n, m, k) \Longleftrightarrow\left(n<_{L} m<_{L} k\right) \vee\left(m<_{L} k<_{L} n\right) \vee\left(k<_{L} n<_{L} m\right)$.
Clearly, for $L, L^{\prime} \in L O$,

$$
L \cong_{L O} L^{\prime} \Rightarrow C_{L} \cong_{C O} C_{L^{\prime}} .
$$

Example

$\omega+1 \not ¥_{L O} \omega$, but $C_{\omega+1} \cong_{C O} C_{\omega}$.
Theorem [I. - Marcone]

- $\cong_{C O} \sim_{B} \cong_{L O}$.
- $\cong_{C O} \leq_{B} \equiv_{\mathcal{K}}$.

Convex embeddability on CO

Definition (B. Kulpeshov, H. D. Macpherson, 2005)

Let $A \subseteq C$, where C is a circular order. The set A is said to be
convex in C if for any $x, y \in A$ one of the following holds:

1. for any $z \in C$ with $C(x, z, y)$ we have $z \in A$;
2. for any $z \in C$ with $C(y, z, x)$ we have $z \in A$.

Convex embeddability on CO

Definition (B. Kulpeshov, H. D. Macpherson, 2005)

Let $A \subseteq C$, where C is a circular order. The set A is said to be
convex in C if for any $x, y \in A$ one of the following holds:

1. for any $z \in C$ with $C(x, z, y)$ we have $z \in A$;
2. for any $z \in C$ with $C(y, z, x)$ we have $z \in A$.

Definition

Let C and C^{\prime} be circular orders. We say that C is a convex of C^{\prime}, and write $C \unlhd_{c} C^{\prime}$, if there exists a convex subset A of C^{\prime} such that $C \cong_{C O} A$. We denote by $\left(\unlhd_{c}\right)_{C O}$ the restriction of the convexity relation to the set $C O$ of (codes for) countable circular linear orders.

The convexity relation \unlhd_{c} on $C O$ is not transitive.

Definition

Let $C, C^{\prime} \in C O$. Then $C \unlhd_{c_{c}}^{<\omega} C^{\prime}$ if and only if there exists $k \in \omega$ and (non necessarily infinite) convex subsets C_{1}, \ldots, C_{k} of C such that

- $C=C_{1}+\ldots+C_{k}$, and
- for every $i=1, \ldots, k$ there exists $f_{i}: C_{i} \rightarrow C^{\prime}$ witnessing $C_{i} \unlhd_{\mathrm{c}} C^{\prime}$ such that the $f_{i}\left(C_{i}\right)$'s are pairwise disjoint in C^{\prime} and

$$
C^{\prime}\left(f_{i}\left(x_{i}\right), f_{j}\left(y_{j}\right), f_{h}\left(z_{h}\right)\right)
$$

for every $x_{i} \in C_{i}, y_{j} \in C_{j}, z_{h} \in C_{h}$ and $i<j<h \leq k$.
$\left(\unlhd_{c}^{<\omega}\right)_{C O}$ is an analytic quasi-order on $C O$. Denote by $\left(\unlhd_{c}^{<\omega}\right)_{C O}$ its induced (analytic) equivalence relation.

Theorem [I. - Marcone - Motto Ros]

$\cong_{L O} \leq_{B} \unrhd_{c}^{<\omega}$.
$\left(\unlhd_{c}^{<\omega}\right)_{C O}$ is an analytic quasi-order on $C O$. Denote by $\left(\unlhd_{c}^{<\omega}\right)_{C O}$ its induced (analytic) equivalence relation.

Theorem [I. - Marcone - Motto Ros]

$$
\cong_{L O} \leq_{B} \unrhd_{c}^{<\omega} .
$$

Consider the equivalence relation E_{1}, that is defined on $2^{\omega \times \omega}$ as

$$
x E_{1} y \Longleftrightarrow \exists m \forall n \geq m \forall k x(n, k)=y(n, k) .
$$

E_{1} is not reducible to any orbit equivalence relation.
$\left(\unlhd_{c}^{<\omega}\right)_{C O}$ is an analytic quasi-order on $C O$. Denote by $\left(\unlhd_{c}^{<\omega}\right)_{C O}$ its induced (analytic) equivalence relation.

Theorem [I. - Marcone - Motto Ros]

$$
\cong_{L O} \leq_{B} \unrhd_{c}^{<\omega} .
$$

Consider the equivalence relation E_{1}, that is defined on $2^{\omega \times \omega}$ as

$$
x E_{1} y \Longleftrightarrow \exists m \forall n \geq m \forall k x(n, k)=y(n, k) .
$$

E_{1} is not reducible to any orbit equivalence relation.
Theorem [Kulikov]
$E_{1} \leq_{B} \unrhd_{c}^{<\omega}$.
$\left(\unlhd_{c}^{<\omega}\right)_{C O}$ is an analytic quasi-order on $C O$. Denote by $\left(\unlhd_{c}^{<\omega}\right)_{C O}$ its induced (analytic) equivalence relation.

Theorem [I. - Marcone - Motto Ros]

$$
\cong_{L O} \leq_{B} \unrhd_{c}^{<\omega} .
$$

Consider the equivalence relation E_{1}, that is defined on $2^{\omega \times \omega}$ as

$$
x E_{1} y \Longleftrightarrow \exists m \forall n \geq m \forall k x(n, k)=y(n, k) .
$$

E_{1} is not reducible to any orbit equivalence relation.

Theorem [Kulikov]

$$
E_{1} \leq_{B} \unlhd_{c}^{<\omega} .
$$

As corollaries, we have

- $\unrhd_{c}^{<\omega}$ is not reducible to any orbit equivalence relation;
$\left(\unlhd_{c}^{<\omega}\right)_{C O}$ is an analytic quasi-order on $C O$. Denote by $\left(\unlhd_{c}^{<\omega}\right)_{C O}$ its induced (analytic) equivalence relation.

Theorem [I. - Marcone - Motto Ros]

$$
\cong_{L O} \leq_{B} \unrhd_{c}^{<\omega} .
$$

Consider the equivalence relation E_{1}, that is defined on $2^{\omega \times \omega}$ as

$$
x E_{1} y \Longleftrightarrow \exists m \forall n \geq m \forall k x(n, k)=y(n, k) .
$$

E_{1} is not reducible to any orbit equivalence relation.

Theorem [Kulikov]

$$
E_{1} \leq_{B} \unlhd_{c}^{<\omega} .
$$

As corollaries, we have

- $\unrhd_{c}^{<\omega}$ is not reducible to any orbit equivalence relation;
- $\cong_{L O}<_{B} \unrhd_{C}^{<\omega}$;
$\left(\unlhd_{c}^{<\omega}\right)_{C O}$ is an analytic quasi-order on $C O$. Denote by $\left(\unlhd_{c}^{<\omega}\right)_{C O}$ its induced (analytic) equivalence relation.

Theorem [I. - Marcone - Motto Ros]

$$
\cong_{L O} \leq_{B} \unrhd_{c}^{<\omega} .
$$

Consider the equivalence relation E_{1}, that is defined on $2^{\omega \times \omega}$ as

$$
x E_{1} y \Longleftrightarrow \exists m \forall n \geq m \forall k x(n, k)=y(n, k) .
$$

E_{1} is not reducible to any orbit equivalence relation.

Theorem [Kulikov]

$$
E_{1} \leq_{B} \unlhd_{c}^{<\omega} .
$$

As corollaries, we have

- $\unrhd_{c}^{<\omega}$ is not reducible to any orbit equivalence relation;
- $\cong_{L O}<_{B} \unrhd_{c}^{<\omega}$;
- $\unrhd_{c}^{<\omega}$ does not reduce to \unrhd_{LO}.

Denote by $\approx_{\mathcal{K}}^{<\omega}$ its associated (analytic) equivalence relation and call it the (finite) piecewise mutual component relation.

Theorem [I. - Marcone - Motto Ros]

- $\left(\unlhd_{c}^{<\omega}\right)_{C O} \leq_{B} \precsim \ll \mathcal{K}$. Then, we have $\left(\unrhd_{c}^{<\omega}\right)_{C O} \leq_{B} \approx_{\mathcal{K}}^{<\omega}$.
- $\cong_{C O} \sim_{B} \cong_{L O}<_{B} \approx_{\mathcal{K}}^{<\omega}$.

References

围 R．Bonnet，E．Corominas and M．Pouzet，Théorie des ensembles－Simplification pour la moltiplication ordinale， gallica．bnf．fr／Archives de l＇Académie des sciences， vol． 276 （1973）．
E－E．CĚch，Point Sets，Academia，Prague，（1969）．
目 B．Sh．Kulpeshov，H．D．Macpherson，Minimality conditions on circularly ordered structures，Math．Log．Quart．，（2005）．
目 V．Kulikov，A Non－classification Result for Wild Knots，Trans． Amer．Math．Soc．，vol． 369 （2017）．
圊 Su Gao，Invariant Descriptive Set Theory，Pure and Applied Mathematics，Chapman and Hall／CRC，（2008）．
A．S．Kechris，Classical Descriptive Set Theory，Graduate Texts in Mathematics，Springer－Verlag，（1995）．

Thank you for your attention!

